Abstract

Blending of two or more pure polymers is an effective way to produce composites with tunable properties. In this paper, we report dynamic Monte Carlo simulation results on the crystallization of crystalline/crystalline (A/B) symmetric binary polymer blend, wherein the melting temperature of A-polymer is higher than B-polymer. We study the effect of segregation strength (arises from the immiscibility between A- and B-polymers) on crystallization and morphological development. Crystallization of A-polymer precedes the crystallization of B-polymer upon cooling from a homogeneous melt. Simulation results reveal that the morphological development is controlled by the interplay between crystallization driving force (viz., attractive interaction) and de-mixing energy (viz., repulsive interaction between two polymers). With increasing segregation strength, the interface becomes more rigid and restricts the development of crystalline structures. Mean square radius of gyration shows a decreasing trend with increasing segregation strength, reflecting the increased repulsive interaction between A- and B-polymers. As a consequence, a large number of smaller size crystals form with lesser crystallinity. Isothermal crystallization reveals that the transition pathways strongly depend on segregation strength. We also observe a path-dependent crystallization behavior in isothermal crystallization: two-step (sequential) isothermal crystallization yields superior crystalline structure in both A- and B-polymers than one-step (coincident) crystallization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.