Abstract
The magnetic and transport behaviours of the La0.7−xGdxSr0.3MnO3 (0≤x≤0.70) system are investigated. The experimental results indicate that with increasing Gd doping content, the magnetism of the system changes from the long-range ferromagnetic order state to the cluster-spin glass state, then to the antiferromagnetic (AFM) state. It is interesting that the phase separation appears at x=0.30 and 0.40 and disappears for x≥0.50 where the AFM state occurs. At high doping content, the transport behaviours exhibit abnormality, e.g. there are two temperature ranges in which the ρ–T curves can be well fitted by a variable-range hopping (VRH) model. We suggest that the VRH does not come from the hopping of carriers between clusters, but from the different magnetic backgrounds in the clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.