Abstract
Abstract Central to the successful advance of tissue engineering (e.g. 1, 2) is the development of highly engineered materials which trigger particular body responses to regenerate specific tissue or sets of tissue. Such properties as hydrophilicity, hydrolytic susceptibility, and protein-recognition behavior are critical to the success of tissue scaffolds. Poly(ethylene glycol) [PEG] is often introduced into scaffold polymers to tune hydrolytically controlled properties. Relatively little is known about the local morphology and nature of phase separation in these systems, however. This research studies the development of phase-separated morphology in blends and randommultiblock copolymers of a tyrosine-based poly(psuedo amino acid) [poly(DTE carbonate)] and PEG 1000 (fig. 1). This system exhibits attractive biocompatability, strength and modulus, and resorption behavior which can be controlled by main-chain and pendant-chain chemistries (3, 4). The nature of phase separation was studied by bright-field TEM (Philips CM30 ST; CM20 FEG TEM/STEM) using solvent-cast thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Microscopy and Microanalysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.