Abstract

In off-axis digital holography, the Fourier transform-based algorithm is commonly used for signal processing. Here, we derive the theoretical phase sensitivity of this algorithm, which can be calculated from a single 2D hologram. This algorithm sensitivity represents the best achievable sensitivity of a system using this algorithm. Our derivation treats the signal in its most general form, considering non-uniform illumination and the effect of sideband filtering. As a result, phase sensitivity varies spatially, determined by local signal-to-noise ratio. Sensitivity expressions for both shot noise and uniform noise models are given. These results are validated with simulations and experiments. Significantly, this theoretical sensitivity can serve as a baseline metric for assessing performance of a phase-imaging system, such as experimental sensitivity and hardware stability, which are critical for high-sensitivity quantitative phase imaging. In addition, the results are equally applicable to other interferometric techniques with similar interferogram patterns and signal processing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.