Abstract
Detection of acoustic pressure with optical fiber interferometers has been studied for many years<sup>1-3</sup>. The conventional solid silica fiber hydrophone was sufficient to prove the concept; however, it has low acoustic sensitivity. This is because 1) the silica glass material has relatively high Young's modulus, which makes the conventional fiber incompressible; 2) the refractive index change resulted from fiber strain has opposite sign with respective to the strain term and hence compromises the acoustic sensitivity. In a hollow-core photonic bandgap fiber (PBF), the fundamental mode is almost entirely confined to the air core, the effective Young's modulus of fiber is expected to be reduced and the undesirable "negative" index effect is anticipated to be greatly decreased. We experimentally measured that the phase sensitivity of the commercial HC-1550-02 PBF and found it is improved by a factor of 15dB compared to a conventional (HNSM-155) single mode fiber, which agrees well with theoretical prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.