Abstract

Phase-sensitive nonlinear gain processes have been implemented as noise-reduced optical amplifiers, which have the potential to achieve signal-to-noise ratios beyond the classical limit. We experimentally demonstrate a novel phase-sensitive four-wave mixing amplification process in a single atomic vapor cell with only two input frequencies and two input vacuum modes. The amount of phase sensitivity depends on the power ratio between the inserted probes as well as on the input frequency of the probes. We find that, for certain phase values, the intensity noise of an output mode is lower than that of its phase-insensitive counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.