Abstract

Using a hydrodynamics preserving thermostat, we present extensive molecular dynamics simulation results for the kinetics of phase separation in a model binary fluid confined inside a cylindrical nanopore with neutral wall. We observe the formation of a striped pattern, where A-rich and B-rich domains appear alternately along the axis of the cylinder. For a wide range of diameters of the cylinders, the growth of the pattern freezes and does not lead to complete phase separation. Prior to freezing, the growth of these stripes passes through two power-law regimes. The early-time regime is related to the Lifshitz-Slyozov diffusive mechanism and the estimated value of the exponent for the later-time regime matches well with that for the inertial hydrodynamic growth in three-dimensional fluid systems. Appropriate arguments have been provided to justify the observations. Furthermore, our results show that the length of the cylinder does not seem to affect the average axial length of the frozen patterns. However, the latter exhibits a linear dependence on the diameter of the cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.