Abstract

Iterative phase retrieval methods based on the Gerchberg-Saxton (GS) or Fienup algorithm typically show stagnation artifacts even after a large number of iterations. We introduce a complexity parameter ζ that can be computed directly from the Fourier magnitude data and provides a measure of fluctuations in the desired phase retrieval solution. It is observed that when initiated with a constant or a uniformly random phase map, the complexity of the Fienup solution containing stagnation artifacts stabilizes at a numerical value that is higher than ζ. We propose a modified Fienup algorithm that uses a controlled sparsity-enhancing step such that in every iteration the complexity of the resulting guess solution is explicitly made close to ζ. This approach, which we refer to as complexity-guided phase retrieval, is seen to provide an artifact-free phase retrieval solution within a few hundred iterations. Numerical illustrations are provided for both amplitude as well as phase objects with and without Poisson noise introduced in the Fourier intensity data. The complexity-guidance concept may potentially be combined with a variety of phase retrieval algorithms and can enable several practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.