Abstract

This paper presents a computationally efficient framework in which a single focal-plane image is used to obtain a high-resolution reconstruction of dynamic aberrations. Assuming small-phase aberrations, a non-linear Kalman filter implementation is developed whose computational complexity scales close to linearly with the number of pixels of the focal-plane camera. The performance of the method is tested in a simulation of an adaptive optics system, where the small-phase assumption is enforced by considering a closed-loop system that uses a low-resolution wavefront sensor to control a deformable mirror. The results confirm the computational efficiency of the algorithm and show a large robustness against noise and model uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call