Abstract
We consider the phase retrieval problem in which one tries to reconstruct a function from the modulus of its wavelet transform. We study the uniqueness and stability of the reconstruction. In the case where the wavelets are Cauchy wavelets, we prove that the modulus of the wavelet transform uniquely determines the function up to a global phase. We show that the reconstruction operator is continuous but not uniformly continuous. We describe how to construct pairs of functions which are far away in \(L^2\)-norm but whose wavelet transforms are very close, in modulus. The principle is to modulate the wavelet transform of a fixed initial function by a phase which varies slowly in both time and frequency. This construction seems to cover all the instabilities that we observe in practice; we give a partial formal justification to this fact. Finally, we describe an exact reconstruction algorithm and use it to numerically confirm our analysis of the stability question.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.