Abstract

Optimizing the energy spectrum density (ESD) of a transmitted waveform can improve radar performance. The design of a time–domain constant–modulus signal corresponding to the transmitted waveform ESD is practically important because constant–modulus signals can maximize transmission power and meet the hardware requirements of radar transmitters. Here, we present a time–domain signal design under dual constraints of energy and constant modulus. The mutual information (MI)–based waveform design method is used to design transmitted waveform ESD under the energy constraint. Then, the bacterial foraging optimization algorithm (BFOA) is proposed to design the time–domain constant–modulus signal. We use minimum mean square error (MMSE) in the frequency domain as the cost function. The BFOA monotonously decreases the MMSE with increasing iterations, which makes the ESD of the time–domain constant–modulus signal close to the MI–based optimal waveform ESD. The simulation results indicate that the proposed algorithm has advantages, including insensitivity to initial phases, rapid convergence, smaller MI loss, and MMSE compared with the iterative reconstruction algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call