Abstract

A phase retrieval method based on deep learning with bandpass filtering in holographic data storage is proposed. The relationship between the known encoded data pages and their near-field diffraction intensity patterns is established by an end-to-end convolutional neural network, which is used to predict the unknown phase data page. We found the training efficiency of phase retrieval by deep learning is mainly determined by the edge details of the adjacent phase codes, which are the high-frequency components of the phase code. Therefore, we can attenuate the low-frequency components to reduce material consumption. Besides, we also filter out the high-order frequency over twice Nyquist size, which is redundant information with poor anti-noise performance. Compared with full-frequency recording, the consumption of storage media is reduced by 2.94 times, thus improving the storage density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.