Abstract

We show how to predict whether a neural network will exhibit global synchrony (a one-cluster state) or a two-cluster state based on the assumption of pulsatile coupling and critically dependent upon the phase response curve (PRC) generated by the appropriate perturbation from a partner cluster. Our results hold for a monotonically increasing (meaning longer delays as the phase increases) PRC, which likely characterizes inhibitory fast-spiking basket and cortical low-threshold-spiking interneurons in response to strong inhibition. Conduction delays stabilize synchrony for this PRC shape, whereas they destroy two-cluster states, the former by avoiding a destabilizing discontinuity and the latter by approaching it. With conduction delays, stronger coupling strength can promote a one-cluster state, so the weak coupling limit is not applicable here. We show how jitter can destabilize global synchrony but not a two-cluster state. Local stability of global synchrony in an all-to-all network does not guarantee that global synchrony can be observed in an appropriately scaled sparsely connected network; the basin of attraction can be inferred from the PRC and must be sufficiently large. Two-cluster synchrony is not obviously different from one-cluster synchrony in the presence of noise and may be the actual substrate for oscillations observed in the local field potential (LFP) and the electroencephalogram (EEG) in situations where global synchrony is not possible. Transitions between cluster states may change the frequency of the rhythms observed in the LFP or EEG. Transitions between cluster states within an inhibitory subnetwork may allow more effective recruitment of pyramidal neurons into the network rhythm. NEW & NOTEWORTHY We show that jitter induced by sparse connectivity can destabilize global synchrony but not a two-cluster state with two smaller clusters firing alternately. On the other hand, conduction delays stabilize synchrony and destroy two-cluster states. These results hold if each cluster exhibits a phase response curve similar to one that characterizes fast-spiking basket and cortical low-threshold-spiking cells for strong inhibition. Either a two-cluster or a one-cluster state might provide the oscillatory substrate for neural computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.