Abstract

Introduction Recent evidence suggests a prominent role for the globus pallidus (GP) in the synchronization of basal ganglia oscillatory activity associated with Parkinson's disease. The emergence of synchronous network activity is strongly influenced by the character of the phase response curve (PRC) that describes how a rhythmically spiking neuron responds to synaptic inputs by advancing or delaying the next spike. The PRC for dendritic inputs (dPRC) to GP contains both positive and negative regions, indicating that excitatory dendritic input can either advance or delay the next spike depending on when it occurs during the intrinsic spike rhythm. However, in vivo GP neurons receive stochastic backgrounds of synaptic input that drive irregular spiking. In this study, we investigated the interaction of stochastic synaptic backgrounds with intrinsic currents in the dendritic membrane of a morphologically realistic GP neuron model to assess how in vivo-like high conductance states affect dendritic phase response properties.

Highlights

  • Open AccessPhase response analysis of a morphological globus pallidus neuron model during irregular spiking: intrinsic and synaptic mechanisms

  • Recent evidence suggests a prominent role for the globus pallidus (GP) in the synchronization of basal ganglia oscillatory activity associated with Parkinson's disease

  • The emergence of synchronous network activity is strongly influenced by the character of the phase response curve (PRC) that describes how a rhythmically spiking neuron responds to synaptic inputs by advancing or delaying the spike

Read more

Summary

Open Access

Phase response analysis of a morphological globus pallidus neuron model during irregular spiking: intrinsic and synaptic mechanisms. Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf

Introduction
Methods
Results and conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.