Abstract
We present the first two-dimensional (2D) terahertz (THz) experiment with three phase-locked THz pulses and a fully phase-resolved detection of the nonlinearly emitted field by electrooptic sampling. In a prototype experiment we study the ultrafast dynamics of nonlinear two-phonon and two-photon interband coherences in the narrow-gap semiconductor InSb. Due to the extraordinarily large optical interband dipole of InSb the experiments were performed in the strongly nonperturbative regime of light-matter interaction allowing for impulsive off-resonant excitation of both two-phonon coherences and two-photon interband coherences, the ultrafast dynamics of which is experimentally observed as a function of the waiting time in the three-pulse 2D experiment. Our novel three-pulse 2D THz spectroscopy paves the way for the detailed investigation of nonlinear quantum coherences in solids and holds potential for an extension to other systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.