Abstract

We study the competition between phase definition and quantum phase fluctuations in interference experiments between independently formed Bose condensates. While phase-sensitive detection of atoms makes the phase progressively better defined, interactions tend to randomize it faster as the uncertainty in the relative particle number grows. A steady state is reached when the two effects cancel each other. Then the phase resolution saturates to a value that grows with the ratio between the interaction strength and the atom detection rate, and the average phase and number begin to fluctuate classically. We discuss how our study applies to both recently performed and possible future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.