Abstract

Recent theoretical work on the role of microscopic chaos in the dynamics and relaxation of many-body quantum systems has made several experimentally confirmed predictions about the systems of interacting nuclear spins in solids, focusing, in particular, on the shapes of spin echo responses measured by nuclear magnetic resonance (NMR). These predictions were based on the idea that the transverse nuclear spin decays evolve in a manner governed at long times by the slowest decaying eigenmode of the quantum system, analogous to a chaotic resonance in a classical system. The present paper extends the above investigations both theoretically and experimentally. On the theoretical side, the notion of chaotic eigenmodes is used to make predictions about the relationships between the long-time oscillation phase of the nuclear free induction decay (FID) and the amplitudes and phases of spin echoes. On the experimental side, the above predictions are tested for the nuclear spin decays of F-19 in CaF2 crystals and Xe-129 in frozen xenon. Good agreement between the theory and the experiment is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.