Abstract

The influence of composition and high-temperature heat treatment on phase content and superconducting properties of the Yni2B2C phase was investigated. Phase relations in those parts of the Y–Ni–B–C quaternary phase diagram, which are relevant for the YNi2B2C intermetallic phase formation, were revealed by x-ray diffraction, optical and scanning electron microscopy, and high-temperature differential thermoanalysis. A widespread interval of superconducting transition temperatures TC = 10.4–15.2 K and small transition width <0.3 K were determined from samples of different nominal compositions after high-temperature annealing. The different intrinsic properties are ascribed to composition variations of the YNi2B2C phase and related to structure parameters, residual resistance ratios, and element concentrations determined by the electron probe microanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.