Abstract

Materials based on CeO2–La2O3–Er2O3 system are promising candidates for a wide of applications, but the phase relationship has not been studied systematically previously. To address this challenge, the isothermal section of the phase diagram for 1500 °C was investigated. The phase relations in the CeO2–La2O3–Er2O3 ternary system at 1500 °C were studied by X-ray diffraction and scanning electron microscopy in the overall concentration range. To study phase relationships at 1500 °C the as-repared samples were thermally treated in two stages: at 1100 °C (for 300 in air) and then at 1500 °C (for 70 h in air) in the furnaces with heating elements based on Fecral (H23U5T) and Superkanthal (MoSi2), respectively. The solid solutions based on various polymorphous forms of constituent phases and with perovskite-type structure of LaErO3 (R) with orthorhombic distortions were revealed in the system. No new phases were found. The isothermal section of the phase diagram for the CeO2–La2O3–Er2O3 system has been constructed. It was established that in the ternary CeO2–La2O3–Er2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3, cubic modification of CeO2 with fluorite-type structure (F), cubic modification Er2O3 and with perovskite-type structure of LaErO3 (R) with orthorhombic distortions. The maximal solubility of ceria in LaErO3 was found to be around ∼ 2 mol% CeO2 along the section CeO2–(50 mol % La2O3 –50 mol% Er2O3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call