Abstract

This paper presents a deep neural network (DNN)-based phase reconstruction from amplitude spectrograms. In audio signal and speech processing, the amplitude spectrogram is often used for processing, and the corresponding phase spectrogram is reconstructed from the amplitude spectrogram on the basis of the Griffin-Lim method. However, the Griffin-Lim method causes unnatural artifacts in synthetic speech. Addressing this problem, we introduce the von-Mises-distribution DNN for phase reconstruction. The DNN is a generative model having the von Mises distribution that can model distributions of a periodic variable such as a phase, and the model parameters of the DNN are estimated on the basis of the maximum likelihood criterion. Furthermore, we propose a group-delay loss for DNN training to make the predicted group delay close to a natural group delay. The experimental results demonstrate that 1) the trained DNN can predict group delay accurately more than phases themselves, and 2) our phase reconstruction methods achieve better speech quality than the conventional Griffin-Lim method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.