Abstract

The microstructure of shape memory alloys changes with the thermomechanical history of the material. During thermomechanical loading, austenite, thermally-induced martensite or stress-induced martensite can be simultaneously present in the material. In applications integrating SMA parts, utilization conditions seriously affect the microstructure and can generate macroscopic strain or stress. Consequently, during thermomechanical loadings, it is important to be able to proportion the different phases and consequently to understand the kinetic transformation. This is very useful in the development of constitutive equations. This study shows, by a series of tests, that the proposed experimental method, based on the measurement of the variation of electric resistance of CuAlBe wires, permits to determine the volume fraction of the different phases present in the material (i.e., austenite, stress-induced martensite and thermally-induced martensite). The proposed method is applied to the most common thermomechanical behavior met in engineering applications of shape memory alloys: pseudoelasticity, pseudoplasticity, recovery-stress and stress-assisted two-way shape memory effect. The proportioning method based on a mixture law integrating the resistivity of pure phases present in the SMA is first performed on different two-phase mixture cases and then applied to a three phase mixture case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.