Abstract

Wide-angle X-ray diffraction studies have indicated that rough and smooth microsomal membranes from bean cotyledons acquire increasing proportions of gel phase lipid at physiological temperature as the tissue senesces. In addition, for both types of membrane the lipid phase transition temperature, defined as the highest temperature at which gel phase lipid can be detected, progressively rises with advancing senescence. Liposomes prepared from total lipid extracts of the membranes show a similar increase in transition temperature with age, indicating that separation of the polar lipids into distinct gel and liquid-crystalline domains is not attributable to peculiar protein-lipid interactions. Liposomes prepared from purified phospholipid fractions of the membranes show little change in transition temperature with age, indicating that the altered phase properties of the lipid do not reflect an increase in fatty acid saturation. However, the formation of gel phase lipid that occurs naturally during senescence can be stimulated by preparing liposomes from a mixture of the phospholipid fraction from young membrane and the neutral lipid fraction from old membrane. By adding the separated components of the neutral lipid fraction to purified phospholipid it was found that sterol esters and several unidentified lipids are able to raise the transition temperature of the polar lipids. Sterols have no effect on the phospholipid transition temperature. The data have been interpreted as indicating that several neutral lipids, which presumably increase in abundance with advancing senescence, induce a lateral phase separation of the polar lipids resulting in distinct gel and liquid-crystalline domains of lipid in the senescent membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call