Abstract

The ability to control the composition and phase properties of bimetallic nanoparticles is critical in exploring catalytic properties. In this paper we present results from a study aimed at determining those properties for carbon-supported gold−platinum (AuPt) catalysts with different bimetallic compositions. The bimetallic nanoparticle catalysts are prepared by a two-phase synthesis protocol employing organic monolayer encapsulation on bimetallic AuPt cores (∼2 nm). The size-controlled nanoparticles are assembled on carbon black support materials with controllable dispersion and metal loading and are further treated by calcination under controlled temperature and atmosphere. The core composition of the bimetallic nanoparticles is determined by direct current plasma-atomic emission spectroscopy. Structural characterization is carried out by X-ray diffraction. The bimetallic nanoparticles were shown to display alloy properties, which is in sharp contrast to the bimetallic miscibility gap known for the bulk...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call