Abstract

Intracellular action potentials from normal, control nondystrophic and dystrophic mouse soleus muscle fibers were recorded in both voltage-time and phase-portrait plots. Flattening of a normally curved portion in certain dystrophic muscle-fiber phase portraits suggested a greater than usual secondary entry of sodium ions after the peak of the action potential. Low-chloride studies excluded an abnormal chloride current as the cause of the flattening. It appears that inactivation of sodium ion conductance may be delayed or reduced, or both, in certain fibers of mice with hereditary muscular dystrophy. This is consistent with a general increase in membrane permeability. No definite negative afterpotential was noted in most mouse muscle-fiber action potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.