Abstract

The present work focuses on a pre-equilibrium nuclear reaction code (based on the one, two and infinity hypothesis of pre-equilibrium nuclear reactions). In the PHASE-OTI code, pre-equilibrium decays are assumed to be single nucleon emissions, and the statistical probabilities come from the independence of nuclei decay. The code has proved to be a good tool to provide predictions of energy-differential cross sections. The probability of emission was calculated statistically using bases of hybrid model and exciton model. However, more precise depletion factors were used in the calculations. The present calculations were restricted to nucleon–nucleon interactions and one nucleon emission. Program summary Program title: PHASE-OTI Catalogue identifier: AEDN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5858 No. of bytes in distributed program, including test data, etc.: 149 405 Distribution format: tar.gz Programming language: Fortran 77 Computer: Pentium 4 and Centrino Duo Operating system: MS Windows RAM: 128 MB Classification: 17.12 Nature of problem: Calculation of the differential cross section for nucleon induced nuclear reaction in the framework of pre-equilibrium emission model. Solution method: Single neutron emission was treated by assuming occurrence of the reaction in successive steps. Each step is called phase because of the phase transition nature of the theory. The probability of emission was calculated statistically using bases of hybrid model [1] and exciton model [2]. However, more precise depletion factor was used in the calculations. Exciton configuration used in the code is that described in earlier work [3]. Restrictions: The program is restricted to single nucleon emission and nucleon–nucleon interactions. Running time: 5–30 minutes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call