Abstract

Phase-ordering dynamics in nematic liquid crystals has been the subject of much active investigation in recent years in theory, experiments, and simulations. With a rapid quench from the isotropic to nematic phase, a large number of topological defects are formed and dominate the subsequent equilibration process. Here we present the results of a molecular dynamics simulation of the Gay-Berne model of liquid crystals after such a quench in a system with 65,536 molecules. Twist disclination lines as well as type-1 lines and monopoles were observed. Evidence of dynamical scaling was found in the behavior of the spatial correlation function and the density of disclination lines. However, the behavior of the structure factor provides a more sensitive measure of scaling, and we observed a crossover from a defect dominated regime at small values of the wave vector to a thermal fluctuation dominated regime at large wave vector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call