Abstract

The count rate of weakly interacting massive particle (WIMP) dark matter candidates in direct detection experiments experiences an annual modulation due to the Earth's motion around the Sun. In the standard isothermal halo model, the signal peaks near June 2nd at high recoil energies; however, the signal experiences a phase reversal and peaks in December at low energy recoils. We show that this phase reversal may be used to determine the WIMP mass. If an annual modulation were observed with the usual phase (i.e., peaking on June 2nd) in the lowest accessible energy recoil bins of the DAMA, CDMS-II, CRESST-II, EDELWEISS-II, GENIUS-TF, ZEPLIN-II, XENON, or ZEPLIN-IV detectors, one could immediately place upper bounds on the WIMP mass of 103, 48, 6, 97, 10, 52, 29, and 29 GeV, respectively. In addition, detectors with adequate energy resolution and sufficiently low recoil energy thresholds may determine the crossover recoil energy at which the phase reverses, thereby obtaining an independent measurement of the WIMP mass. We study the capabilities of various detectors, and find that CRESST-II, ZEPLIN-II, and GENIUS-TF should be able to observe the phase reversal in a few years of runtime, and can thus determine the mass of the WIMP if it is $O(100\mathrm{GeV}).$ Xenon based detectors with 1000 kg (XENON and ZEPLIN-IV) and with energy recoil thresholds of a few keV require 25 kg yr exposure, which will be readily attained in upcoming experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call