Abstract

Based on the assumption of large number of constellation points and high signal-to-noise ratio (SNR), phase noise sensitivity of lattice constellation is analyzed. The upper bound of symbol error rate (SER) in additive white Gaussian noise (AWGN) channel is derived from pairwise error probability. For small phase noise, phase noise channel is transformed to AWGN channel. With the aid of Wiener model, the obtained upper bound can be extended to phase noise channel. The proposed upper bound can be used as performance criterion to analyze the sensitivity of phase noise in multi-dimensional lattice constellation. Simulation results show that with the same normalized spectral efficiency, higher dimensional lattice constellations are more sensitive than lower ones in phase noise channel. It is also shown that with the same dimension of constellation, larger normalized spectral efficiency means more performance loss in phase noise channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.