Abstract

modulation (M-QAM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) signal employing a unique pilot’s system design, Feed forward maximum likelihood phase estimator as well as Wiener filter-type Minimum Mean square error (MMSE) interpolator. The wiener filter relies upon Kolmogorov type to interpolate the estimated phase noise with M taps. A 20 Gb/s CO-OFDM via 4-QAM, 16-QAM, 64-QAM then 256-QAM modulation is applied as simulation model in Optisystem. System efficiency is evaluated throughout phase root mean square error (RMSE) calculated in degree. A comparative investigation of four different modulation techniques found that 4-QAM performs with good RMSE versus the rest of square M-QAM. A free-noise receiver, a pilot aided feed forward maximum likelihood (PA-FF-ML) receiver and a PA-FF-ML with MMSE (PA-FF-ML-MMSE) are compared. PA-FF-ML-MMSE exhibited superior performance rather than receiver using just PA-FF-ML.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call