Abstract

Excess noise induced by the phase drifts is a serious impairment for the continuous-variable quantum key distribution with locally generated local oscillator scheme, which is recently proposed to avoid the side channel attacks due to the transmitted local oscillator. Theoretical and experimental studies on the phase estimation have been widely reported, while two frequency-locked laser sources are indispensable to achieve quantum coherent detection. Moreover, the self-referenced phase estimation scheme requires to propagate the strong reference pulse through optical fiber, which opens a security loophole through the manipulation of the reference pulse amplitude. Based on the theoretical security and Bayes' theorem, we propose a phase estimation protocol, which does not require propagating the strong reference pulse for performing phase estimation. Compared to the other related work, the protocol can avoid the security problem caused by strong reference pulse. Moreover, this algorithm is an iterative progress for each of experiment to obtain the phase estimation and its uncertainty. We hope the proposed scheme could further promote the performance of continuous-variable quantum key distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call