Abstract

We consider phase multistability and phase synchronization phenomena in a chain of period-doubling oscillators. The synchronization in arrays of diffusively coupled self-sustained oscillators manifests itself as rotating wave regimes, which are characterized by equal amplitudes and phases in every site which are shifted by a constant value. The value of the phase shift is preserved while the shape of motion becomes more complex through a period-doubling cascade. The number of coexisting attractors increases drastically after the transition from period-one to period-two oscillations and then after every following period-doubling bifurcation. In the chaotic region, we observe a number of phase-synchronized modes with instantaneous phases locked in different values. The loss of phase synchronization with decreasing coupling is accompanied by intermittency between several synchronous regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call