Abstract
Distances between a spin-1/2 and a spin>1/2 can be efficiently measured by a variety of magic-angle spinning solid state NMR methods such as Rotational Echo Adiabatic Passage Double Resonance (REAPDOR), Low-Alpha/Low-Amplitude REDOR (LA-REDOR) and Rotational-Echo Saturation-Pulse Double-Resonance (R/S-RESPDOR). In this manuscript we show that the incorporation of a phase modulation into a long quadrupolar recoupling pulse, lasting 10 rotor periods that are sandwiched between rotor-synchronized pairs of dipolar recoupling π pulses, extends significantly the range of the values of the quadrupole moments that can be accessed by the experiment. We show by a combination of simulations and experiments that the new method, phase-modulated LA-REDOR, is very weakly dependent on the actual value of the radio-frequency field, and is highly robust with respect to off-resonance irradiation. The experimental results can be fitted by numerical simulations or using a universal formula corresponding to an equal-transition-probability model. Phase-modulated LA-REDOR 13C{11B} and 15N{51V} dipolar recoupling experiments confirm the accuracy and applicability of this new method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.