Abstract

We propose a one-dimensional optical lattice model to simulate and explore two-dimensional topological phases with ultracold atoms, considering the phases of the hopping strengths as an extra dimension. It is shown that the model exhibits nontrivial phases, and corresponding two chiral-edge states. Moreover, we demonstrate the connections between changes in the topological invariants and the Dirac points. Furthermore, the topological order detected by the particle pumping approach in cold atoms is also investigated. The results obtained here provide a feasible and flexible method of simulating and exploring high-dimensional topological phases in low-dimension systems via the controllable phase of the hopping strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.