Abstract

As star clusters are expected to form with low star formation efficiencies, the gas in the cluster is expelled quickly and early in their development: the star cluster "pops." This leads to an unbound stellar system, evolving in the Galactic potential. Previous N-body simulations have demonstrated the existence of a stepped number density distribution of cluster stars after popping, both in vertical position and vertical velocity, with a passing resemblance to a Christmas tree. Using numerical and analytical methods, we investigate the source of this structure, which arises due to the phase mixing of the out-of-equilibrium stellar system, determined entirely by the background analytic potential. Considering only the vertical motions, we construct a theoretical model to describe the time evolution of the phase space distribution of stars in a Miyamoto-Nagai disk potential and a full Milky-Way type potential comprising bulge, halo and disk components, which is then compared with N-body simulations. Using our theoretical model, we investigate the possible observational signatures and the feasibility of detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.