Abstract
We have demonstrated temperature rises that result from nonlinear absorption in single-pass frequency-doubling experiments using femtosecond pulses and a 3-mm-thick KNbO3 crystal. These temperature changes shift the phase-matching curve and must be accounted for to optimize the conversion efficiency. We obtained a maximum second-harmonic generation (SHG) efficiency of 66% at an input power of 107 mW and a slope efficiency of ∼1.5%/mW at low input powers. We have investigated, for the first time to our knowledge, the focusing dependence of the phase-matching temperature. We have also found that the temperature-dependent SHG efficiency in femtosecond SHG experiments is significantly different from that obtained for frequency doubling of continuous-wave light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.