Abstract

A method is described to design parallel transmit (PTX) excitation pulses that are compatible with turbo spin echo (TSE) sequences, based on information available from conventional per-channel B1+ mapping. The excitation phase of PTX pulses that generate a reduced field of excitation (rFOX) is matched to the phase the quadrature mode of a PTX coil. This enables TSE imaging of a PTX-enabled rFOX excitation combined with standard nonselective refocusing pulses transmitted in the quadrature mode. In-vivo imaging experiments were performed at 7T using a dual channel parallel transmit head coil. In combination with simulations, the CPMG-required excitation phase was confirmed in TSE sequences with refocusing pulses of variable flip angle. Further experiments showed that the same rFOX was generated in TSE and gradient echo sequences, enabling high-resolution imaging with parallel imaging acceleration of the rFOX.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.