Abstract

For the imaging of faint companions, phase mask coronagraphy has the dual advantages of a small inner working angle and high throughput. This paper summarizes our recent work in developing phase masks and in demonstrating their capabilities at JPL. Four-quadrant phase masks have been manufactured at JPL by means of both evaporation and etching, and we have been developing liquid crystal vortex phase masks in partnership with a commercial vendor. Both types of mask have been used with our extreme adaptive optics well-corrected subaperture at Palomar to detect known brown dwarf companions as close as ~ 2.5 λ/D to stars. Moreover, our recent vortex masks perform very well in laboratory tests, with a demonstrated infrared contrast of about 10^(−6) at 3 λ/D, and contrasts of a few 10^(−7) with an initial optical wavelength device. The demonstrated performance already meets the needs of ground-based extreme adaptive optics coronagraphy, and further planned improvements are aimed at reaching the 10^(−10) contrast needed for terrestrial exoplanet detection with a space-based coronagraph.

Highlights

  • The detection of very faint planets near much brighter stars calls for the suppression of starlight

  • For the imaging of faint companions, phase mask coronagraphy has the dual advantages of a small inner working angle and high throughput

  • Starlight suppression with phase mask coronagraphy has the advantage of employing transparent focal plane masks, which results in small inner working angles, high throughput and a clear off-axis field of view

Read more

Summary

Introduction

The detection of very faint planets near much brighter stars calls for the suppression of starlight. For the imaging of faint companions, phase mask coronagraphy has the dual advantages of a small inner working angle and high throughput. This paper summarizes our recent work in developing phase masks and in demonstrating their capabilities at JPL.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.