Abstract
AbstractThe complex statistical and fractal analysis of phase properties, inherent to birefringence networks of liquid crystals consisting of optically-thin layers, prepared from synovial fluid taken from human joints, is performed in this work. Within the framework of a statistical approach, the authors have investigated values and ranges for changes of statistical moments of the 1-st to the 4-th orders that characterize coordinate distributions for phase shifts between orthogonal components of amplitudes inherent to laser radiation, transformed by synovial fluid layers, for human joints with various pathologies. The correlation criteria for differentiation of phase maps, describing pathologically changed liquid-crystal networks, have been ascertained. In the framework of the fractal approach, dimensions of self-similar coordinate phase distributions as well as features of transformation of logarithmic dependences for power spectra of these distributions for various types of human joint pathologies are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.