Abstract

The auditory system of the barn owl is an important model for temporal processing on a very fast time scale and for the neural mechanisms and circuitry underlying sound localization. Phase locking has been shown to be the behaviorally relevant temporal code. This study examined the quality and intensity dependence of phase locking in single auditory nerve fibers of the barn owl to define the input to the known brainstem circuit for temporal processing. For direct comparison in the same individuals, recordings were also obtained from the relevant next higher center, the nucleus magnocellularis (NM). Phase locking was regularly seen at sound pressure levels (SPL) below those eliciting an increase in spike rate, thus providing an additional cue for signal detection. The quality of phase locking, expressed as vector strength, decreased with increasing frequency. Auditory nerve fibers showed an unusual step-like decline with a prominent plateau in the mid-frequency range (1.5-3 kHz), indicating that some specialization enables the owl to halt the deterioration and extend phase locking to frequencies up to 10 kHz, above the range commonly observed in other species. Phase locking in the NM was consistently inferior to that of auditory-nerve fibers at frequencies above 1 kHz, suggesting that the synapse plays a limiting role in temporal precision. The response delays, or group delays, derived from the phase-versus-frequency functions of auditory nerve fibers were not consistent with the unusual spatial frequency representation in the owl cochlea. This questions the common assumption that group delays reflect cochlear wave travel times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.