Abstract

An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.