Abstract

We calculate the Andreev conductance of a superconducting ring interrupted by a flux-biased Josephson junction, searching for electrical signatures of circulating edge states. Two-dimensional pair potentials of spin-singlet d-wave and spin-triplet p-wave symmetry support, respectively, (chiral) Dirac modes and (chiral or helical) Majorana modes. These produce h/e-periodic magnetoconductance oscillations of amplitude \simeq (e^{2}/h)N^{-1/2}, measured via an N-mode point contact at the inner or outer perimeter of the grounded ring. For Dirac modes the oscillations in the two contacts are independent, while for an unpaired Majorana mode they are phase locked by a topological phase transition at the Josephson junction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.