Abstract
Large-scale organized vortical structures were studied experimentally in a free swirling jet of air experiencing vortex precession (PVC) at ambient conditions. Detailed measurements were performed in the region near the nozzle exit using phase-locked LDV and PIV, at a Reynolds number of Re ≈ 24,400 and a swirl parameter S ≈ 1.0. The investigation allowed reconstruction of the time-averaged flowfield, with the associated distribution of turbulent fluctuations, the phase-locked structure of the jet and the associated precessing vortex structure. An original joint analysis of power spectra and probability density functions of velocity data led to quantification of the PVC effect on turbulent fluctuations. This analysis showed that the PVC contribution can be properly separated from the background random turbulence, reproducing the results of phase-locked measurements. It is found that the background turbulence in the near field is substantially weaker if compared to the coherent fluctuations induced by vortex precession.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.