Abstract

Helioseismic rays trapped in a nonmagnetic acoustic cavity suffer a +90° phase jump at their lower (Lamb) turning point and −90° at the upper (acoustic cutoff) reflection point. That the two cancel allows helioseismologists to effectively assume that phase is locally continuous along a ray path joining two surface points. However, in strong surface magnetic field, as found in sunspots, it is shown – for an isothermal model with uniform magnetic field – that the phase jump for fast magnetoacoustic rays that penetrate the acoustic/Alfvenic equipartition level (c=a) is around −120°. Moreover, there are further negative phase jumps on the upgoing and downgoing legs at c=a that add to the net phase change. Neglecting these effects can lead to a misinterpretation of helioseismic data in terms of travel-time shifts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.