Abstract

Relaxor ferroelectrics are a special class of material that exhibit an enormous electromechanical response and are easily polarized with an external field. These properties make them attractive for applications as sensors and actuators. Local clusters of randomly oriented polarization, known as polar nanoregions (PNRs), are specific to relaxor ferroelectrics and play a key role in governing their dielectric properties. Here, we show through neutron inelastic scattering experiments that the PNRs can also significantly affect the structural properties of the relaxor ferroelectric Pb(Zn(1/3)Nb(2/3))O(3)-4.5%PbTiO(3) (PZN-4.5%PT). A strong interaction is found between the PNRs and the propagation of acoustic phonons. A comparison between acoustic phonons propagating along different directions reveals a large asymmetry in the lattice dynamics that is induced by the PNRs. We suggest that a phase instability induced by this PNR-phonon interaction may contribute to the ultrahigh piezoelectric response of this and related relaxor ferroelectric materials. Our results naturally explain the emergence of the various observed monoclinic phases in these systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call