Abstract

When a metal nanoparticle is brought near to a metal surface within electron tunneling distance (∼1 nm), classical electromagnetic coupling between the nanoparticle and the metal is expected to transition to quantum coupling. We show that this transition can be observed as a drastic phase change in the surface plasmon resonance (SPR) images of the gold nanoparticles. We study the transition by controlling the distance between the nanoparticles and electrode surface, modeling the impact of the transition on the SPR image in terms of a phase shift and demonstrating detection of microRNA based on the transition from classical to quantum coupling. The work shows that the quantum coupling can be directly visualized in SPR, and the extremely sensitive dependence of the transition on distance leads to a biosensing principle with SPR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.