Abstract

Simple SummaryPatients with HER-2 positive breast cancer who progress through available HER2-targeted therapy, at present, have few effective treatment options. PIK3CA is mutated in approximately 20% of HER2 positive breast cancers, contributes to HER-2 therapy resistance and may be predictive of response to PI3K inhibitors, including copanlisib. PIK3CA gene mutations were assessed in archival tumour tissue and serially in plasma circulating tumour DNA over the course of treatment with copanlisib. Disease stabilisation (stable disease ≥16 weeks) was seen with copanlisib and trastuzumab in a proportion of participants (n = 6, 50%). PIK3CA mutation detected in archival tumour tissue did not appear to predict tumour response to copanlisib and trastuzumab in this small, heavily pre-treated cohort. Notably, PIK3CA circulating tumour DNA mutations were detected in the plasma of all trial participants, including those who tested negative for the mutation in tissue. This study established a dosing strategy for the novel combination of the PI3K inhibitor copanlisib with trastuzumab and suggested clinical activity for the combination in heavily pre-treated HER-2 positive advanced breast cancer. Further evaluation in a phase 2 study in patients with HER2 therapy resistant tumours is ongoing (NCT02705859).Background: Activation of the phosphoinositide-3 kinase (PI3K) pathway is a resistance mechanism to anti-human epidermal growth factor receptor 2 (HER2) therapy. This phase Ib trial was conducted to determine the maximum tolerated dose (MTD) of copanlisib, an intravenous (IV) pan-class I PI3K inhibitor, combined with trastuzumab. Methods: Patients with advanced HER2-positive breast cancer and disease progression following at least one prior line of HER2 therapy in the metastatic setting were treated with copanlisib (45 or 60 mg) IV on days 1, 8 and 15 of a 28-day cycle with a fixed dose of trastuzumab 2 mg/kg weekly. Results: Twelve patients were enrolled. The MTD was determined as copanlisib 60 mg plus trastuzumab 2 mg/kg weekly. The most common adverse events of any grade occurring in more than two patients were hyperglycaemia (58%), fatigue (58%), nausea (58%) and hypertension (50%). Stable disease was confirmed at 16 weeks in six participants (50%). PIK3CA mutations were detected in archival tumour of six participants (50%). PIK3CA hotspot mutations, were detectable in pre- and on-treatment plasma of all participants. Pre- and post-treatment tumour biopsies for two patients identified temporal genomic heterogeneity, somatic mutations in the TRRAP gene, which encodes a PI3K-like protein kinase, and emergent somatic mutations related to protein kinase signalling. Conclusion: Copanlisib and trastuzumab can be safely administered with fair overall tolerability. Preliminary evidence of tumour stability was observed in patients with heavily pre-treated, metastatic HER2 positive breast cancer. Several potential biomarkers were identified for further study in the current phase 2 clinical trial. NCT: 02705859.

Highlights

  • The human epidermal growth factor receptor 2 (HER2) gene is amplified or overexpressed in approximately 20% of breast cancers and was previously associated with a poorer prognosis

  • All patients who received a dose of copanlisib plus trastuzumab were assessed for safety

  • This first-in-human trial of copanlisib and trastuzumab demonstrates that the combination can be administered safely in patients with advanced HER2-positive, trastuzumabresistant breast cancer

Read more

Summary

Introduction

The human epidermal growth factor receptor 2 (HER2) gene is amplified or overexpressed in approximately 20% of breast cancers and was previously associated with a poorer prognosis. The advent of a range of HER2 targeted therapies, including the monoclonal antibody trastuzumab, significantly improved outcomes for patients with this subtype of breast cancer but only about one third of women demonstrate tumour regression with trastuzumab monotherapy and many patients treated with trastuzumab plus chemotherapy still develop progressive disease within one year [1,2,3]. Activation of the phosphoinositide-3 kinase (PI3K) pathway is a resistance mechanism to anti-human epidermal growth factor receptor 2 (HER2) therapy. This phase Ib trial was conducted to determine the maximum tolerated dose (MTD) of copanlisib, an intravenous (IV).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call