Abstract
Simple SummaryAllogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for high-risk hematologic malignancies. However, disease recurrence after allo-HSCT remains a critical issue, underlining the need to develop maintenance therapy. In this context, NK cell-based immunotherapies could enhance graft-versus-tumor effect without triggering graft-versus-host disease. In this prospective phase I clinical trial, we demonstrated the safety of donor-derived NK cell infusion as a prophylactic treatment after allo-HSCT for patients with hematological malignancies. This opens perspectives for future developments of NK cell based therapeutic strategies after allo-HSCT with low incidence of GVHD, representing an advantage over post-transplant T cell modulations that are commonly used in clinical routine.Background: NK cell-based immunotherapy to prevent relapse after allogeneic transplantation is an appealing strategy because NK cells can provide strong antitumor effect without inducing graft-versus-host disease (GVHD). Thus, we designed a phase-I clinical trial evaluating the safety of a prophylactic donor-derived ex vivo IL-2 activated NK cell (IL-2 NK) infusion after allo-HSCT for patients with hematologic malignancies. Methods: Donor NK cells were purified and cultured ex vivo with IL-2 before infusion, at three dose levels. To identify the maximum tolerated dose was the main objective. In addition, we performed phenotypical and functional characterization of the NK cell therapy product, and longitudinal immune monitoring of NK cell phenotype in patients. Results: Compared to unstimulated NK cells, IL-2 NK cells expressed higher levels of activating receptors and exhibited increased degranulation and cytokine production in vitro. We treated 16 patients without observing any dose-limiting toxicity. At the last follow up, 11 out of 16 treated patients were alive in complete remission of hematologic malignancies without GVHD features and immunosuppressive treatment. Conclusions: Prophylactic donor-derived IL-2 NK cells after allo-HSCT is safe with low incidence of GVHD. Promising survivals and IL-2 NK cell activated phenotype may support a potential clinical efficacy of this strategy.
Highlights
Allogeneic hematopoietic stem cell transplantation is a curative option for high-risk hematologic malignancies
IL-2 activated Natural Killer (NK) cell (IL-2 NK) cells after IV injection into congenic C57BL/6 (CD45.2+) recipient mice were monitored for 3 days post transfer (Figure 2A)
The relative proportion of donor NK cells in the total NK cell population of each organ was higher in the liver, spleen, and lungs than in the blood and lymph nodes of recipient mice suggesting that these tissues are more prone to promoting NK cell recruitment and/or survival (Figure 2C)
Summary
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for high-risk hematologic malignancies. The use of DLI to treat molecular relapse and/or mixed chimerism (preemptive therapy) demonstrated improved results, suggesting that cellular immunotherapy after allo-HSCT is more effective when used to clear residual disease [7]. These studies paved the way for the use of prophylactic DLI. NK cell-based immunotherapy to prevent relapse after allogeneic transplantation is an appealing strategy because NK cells can provide strong antitumor effect without inducing graft-versus-host disease (GVHD). Promising survivals and IL-2 NK cell activated phenotype may support a potential clinical efficacy of this strategy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.