Abstract

PurposeTo investigate the role of patient-specific dosimetry as a predictive marker of survival and as a potential tool for individualised molecular radiotherapy treatment planning of bone metastases from castration-resistant prostate cancer, and to assess whether higher administered levels of activity are associated with a survival benefit.MethodsClinical data from 57 patients who received 2.5–5.1 GBq of 186Re-HEDP as part of NIH-funded phase I/II clinical trials were analysed. Whole-body and SPECT-based absorbed doses to the whole body and bone lesions were calculated for 22 patients receiving 5 GBq. The patient mean absorbed dose was defined as the mean of all bone lesion-absorbed doses in any given patient. Kaplan–Meier curves, log-rank tests, Cox’s proportional hazards model and Pearson’s correlation coefficients were used for overall survival (OS) and correlation analyses.ResultsA statistically significantly longer OS was associated with administered activities above 3.5 GBq in the 57 patients (20.1 vs 7.1 months, hazard ratio: 0.39, 95 % CI: 0.10–0.58, P = 0.002). A total of 379 bone lesions were identified in 22 patients. The mean of the patient mean absorbed dose was 19 (±6) Gy and the mean of the whole-body absorbed dose was 0.33 (±0.11) Gy for the 22 patients. The patient mean absorbed dose (r = 0.65, P = 0.001) and the whole-body absorbed dose (r = 0.63, P = 0.002) showed a positive correlation with disease volume. Significant differences in OS were observed for the univariate group analyses according to disease volume as measured from SPECT imaging of 186Re-HEDP (P = 0.03) and patient mean absorbed dose (P = 0.01), whilst only the disease volume remained significant in a multivariable analysis (P = 0.004).ConclusionThis study demonstrated that higher administered activities led to prolonged survival and that for a fixed administered activity, the whole-body and patient mean absorbed doses correlated with the extent of disease, which, in turn, correlated with survival. This study shows the importance of patient stratification to establish absorbed dose–response correlations and indicates the potential to individualise treatment of bone metastases with radiopharmaceuticals according to patient-specific imaging and dosimetry.

Highlights

  • Prostate cancer is the second most common cancer in men, with an estimated 1.1 million new cases worldwide in 2012 [1]

  • The use of radiopharmaceuticals in cancer metastatic to bone is rapidly increasing. 223Ra-dichloride has been shown to improve survival compared to placebo [4] and radiolabelled anti-prostate-specific membrane antigen (PSMA)-targeted therapies show promise for diagnostic and therapeutic management of castration-resistant prostate cancer (CRPC) [5]; longterm outcome data are not yet available for these agents

  • A summary of patient characteristics relevant to the survival analysis are presented in Tables 1 and 2, including baseline prostate-specific antigen (PSA), alkaline phosphatase (ALP), haemoglobin, albumin and creatinine levels, administered activity and bone score/disease volume

Read more

Summary

Introduction

Prostate cancer is the second most common cancer in men, with an estimated 1.1 million new cases worldwide in 2012 [1]. Most treatments are based on fixed levels of administered activity, which has resulted in a wide range of absorbed dose delivered to patients treated with bone-seeking radiopharmaceuticals [15,16,17,18,19]. A similar approach to that routinely used in external beam radiotherapy, whereby radiation doses delivered to tumours are safely maximised, would, in many cases, entail higher activity administrations, given the low levels of toxicity reported. This study investigated such potential for personalised treatments.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call