Abstract

TAS-106 is a novel nucleoside analog that inhibits RNA polymerases I, II and II and has demonstrated robust antitumor activity in a wide range of models of human cancer in preclinical studies. This study was performed to principally evaluate the feasibility of administering TAS-106 as a bolus intravenous (IV) infusion every 3 weeks. Patients with advanced solid malignancies were treated with escalating doses of TAS-106 as a single bolus IV infusion every 3 weeks. Plasma and urine sampling were performed during the first course to characterize the pharmacokinetic profile of TAS-106 and assess pharmacodynamic relationships. Thirty patients were treated with 66 courses of TAS-106 at eight dose levels ranging from 0.67-9.46 mg/m(2). A cumulative sensory peripheral neuropathy was the principal dose-limiting toxicity (DLT) of TAS-106 at the 6.31 mg/m(2) dose level, which was determined to be the maximum tolerated dose (MTD). Other mild-moderate drug-related toxicities include asthenia, anorexia, nausea, vomiting, myelosuppression, and dermatologic effects. Major objective antitumor responses were not observed. The pharmacokinetics of TAS-106 were dose-proportional. The terminal elimination half-life (t(1/2)) averaged 11.3 ± 3.3 h. Approximately 71% of TAS-106 was excreted in the urine as unchanged drug. Pharmacodynamic relationships were observed between neuropathy and: C(5min;) AUC(0-inf;) and dermatologic toxicity. The recommended phase II dose of TAS-106 is 4.21 mg/m(2). However, due to a cumulative drug-related peripheral sensory neuropathy that proved to be dose-limiting, further evaluation of this bolus every 21 day infusion schedule will not be pursued and instead, an alternate dosing schedule of TAS-106 administered as a continuous 24-hour infusion will be explored to decrease C(max) in efforts to minimize peripheral neuropathy and maximize antitumor activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.