Abstract

CaCo 2 cells, cultivated in a synthetic, serum-free nutritive medium on poly (ethylene terephthalate) membranes, form a confluent monolayer of differentiated cells, with the apical and basolateral poles exposed to the upper and lower compartments, respectively, of bicameral culture inserts (Halleux and Schneider, In Vitro Cell Dev Biol, 27A: 293–302, 1991). This cell culture system allows the passage of intact mannitol by the paracellular route and the transcellular diffusion of testosterone which appears mainly as a biotransformed unconjugated metabolite. When ethoxyresorufin is added to either the apical or basolateral poles of living CaCo 2 cells, resorufin is formed, and more than 80% is excreted at the apical pole. Under our experimental conditions, no detectable amounts of glucurono- or sulfoconjugates are found. Methylcholanthrene and phenobarbital increase the biotransformation of ethoxyresorufin 50 and 3 times, respectively, and induce that of benzoxyresorufin, but not of pentoxyresorufin which remains absent under all conditions. These substances do not affect the proportion of resorufin recovered at the apical role. Verapamil inhibits by 25% the release of resorufin but does not affect its distribution. Chlorodinitrobenzene is conjugated with glutathione and at least two-thirds of the product is excreted at the apical pole; methylcholanthrene and phenobarbital do not increase this activity. These results demonstrate that differentiated CaCo 2 cells, under serum-free conditions, perform phase I and II reactions and that the biotransformation products are selectively excreted at the apical pole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.